
Libmonitor: A Tool for First-Party Monitoring

Mark W. Krentel
Dept. of Computer Science

Rice University
6100 Main St., Houston, TX 77005

krentel@rice.edu

ABSTRACT
Libmonitor is a library that provides hooks into a program
and provides callback functions for monitoring the begin and
end of processes and threads and maintains control across
fork, exec and in the presence of signals. It provides a layer
on which to build first-party profiling tools for performance
or correctness. Libmonitor is lightweight, fully scalable, easy
to use and does not require access to an application’s source
code.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—performance
measures

General Terms
Measurement, Performance

Keywords
libmonitor, process and thread control

1. INTRODUCTION
Libmonitor is a library that provides hooks into a program
for first-party monitoring and control of process and threads.
Libmonitor gains control and provides callback functions for
the begin and end of processes and threads and maintains
control across fork, exec and in the presence of signals. It
provides a separable layer on which to build profiling tools
for performance or correctness. For example, the Rice HPC-
Toolkit [1, 8] uses libmonitor to attach to a process, turn
profiling on and off, assist in unwinding the call stack and
manage exceptional events such as signals.

Libmonitor was designed for large parallel systems such as
IBM’s BlueGene and Cray’s XT. These systems run re-
stricted microkernels on separate compute nodes where stan-
dard Unix tools such as ptrace, fork and dlopen are often
unsuitable or unavailable. For efficiency, the compute nodes
often do not support dynamically linked executables. On

these systems, the profiling tools must adapt to first-party
monitoring and the entire program, including application,
profiling tools and libmonitor must run as a single statically
linked binary.

Libmonitor works by overriding functions such as main, exit
and pthread_create. This allows libmonitor to gain control
of a process and provide a callback function to the client.
There are callbacks for the begin and end of processes and
threads, fork, dlopen and MPI_Init, as summarized in Fig-
ure 1. After the callback returns, libmonitor invokes the real
function to allow the application to continue. There are also
support functions for intercepting the application’s signals,
to assist in unwinding the call stack and to provide access
to the real versions of some of the functions that libmonitor
overrides. Figure 2 summarizes the support functions.

A key feature in how libmonitor attaches to a process is that
it does so without access to the application’s source code.
For proper insight into how a program runs, it is vital to
observe it in its native state at full optimization. There are
technical differences in the statically and dynamically linked
cases, but neither one requires modifying or even reading
the application’s source code. Instead, libmonitor intercepts
the application’s function calls at the object layer. This
approach works with multi-lingual code, does not require
any specific language features or compilers and works at all
optimization levels. This allows for monitoring programs in
their native state.

The libmonitor layer is also lightweight and fully scalable.
Libmonitor does not require any inter-process communica-
tion and does not create any new processes or threads for
itself. Thus, any overhead does not increase with the number
of processors. As such, libmonitor is suitable for running on
parallel systems with hundreds of thousands or even millions
of cores.

The advantage of libmonitor as a separate tool is that it gives
a clean separation between the application and the libmon-
itor client. Libmonitor distinguishes between the client, the
application and libmonitor itself. The client knows about lib-
monitor and libmonitor provides callback and support func-
tions to the client, but the application doesn’t know that
the client or libmonitor are part of its process. The client
can write its callback functions without worrying about the
details of how libmonitor attaches its hooks into the appli-
cation.

This separation also makes libmonitor very easy to use, al-
lowing for quick prototypes of profiling tools. A libmoni-
tor client only needs to define the callback functions that it
wants and compile them into an object file or library. For
example, the papiex program [7] reports the totals of perfor-
mance counter events in a program’s execution. A skeletal
version of papiex can be written by combining libmonitor
and PAPI [9] in about half a page of code as shown in Fig-
ure 3. The program simply needs to start PAPI in the init
process callback and then stop it and print the counter re-
sults in the fini process callback.

The original monitor program was written by Philip Mucci
at the University of Tennessee [6]. Libmonitor as described
in this paper is a rewrite from scratch of Mucci’s monitor.
Our original motivation was to extend the old monitor to
handle the case of statically linked binaries. Since then,
there have been several other improvements and better han-
dling of corner cases. The new libmonitor has more extensive
support for signal handlers, pre- and post-callbacks for the
beginning of threads and fork, generic MPI support and sup-
port for finding a thread’s stack bottom to assist unwinding
the call stack.

Libmonitor is used by the Rice HPCToolkit [1, 8] and
Open SpeedShop [2] projects. Both projects use libmonitor
to attach their profiling tools to a process.

Libmonitor is licensed under the three-clause BSD license
and is available via anonymous subversion download from
the SciDAC Outreach Center [3].

2. LIBMONITOR FEATURES
Libmonitor’s main function is to give the client control over
an application’s processes and threads. And it must do so
without the application noticing and without access to its
source code. To meet these requirements, libmonitor over-
rides functions such as main and exit. When libmonitor
gains control, it invokes a callback function that the client
uses to insert its own code. When the callback returns, lib-
monitor calls the real function to return control to the appli-
cation. For example, HPCToolkit [1, 8] turns on profiling
interrupts via setitimer or PAPI_overflow at the beginning
of the process and then turns them off at the end.

The core libmonitor callback functions include four callbacks
for the begin (init) and end (fini) of processes and threads.
These functions are called from within the thread itself. An-
other callback is for the beginning of thread support. This
function is called from within the main thread just before
the application creates the first new thread. Libmonitor
promises that the init process callback is called before the be-
gin thread callback and that is called before any init thread
callback. At the end of the process, all of the fini thread
callbacks are called before the final fini process. Figure 1
summarizes the callback functions.

To insert its code into an application, the client defines the
callback functions that it wants to receive and compiles them
into an object file or shared library. These callbacks are
then linked with libmonitor and the application at run time
with LD_PRELOAD in the dynamic case or at link time with
the linker option --wrap in the static case. The client does

not need to define all of the callbacks. Libmonitor provides
default definitions as weak symbols for all of the callbacks,
so the client only needs to define the ones it wants.

Fork and exec. In Linux, new processes are created and run
with fork and exec. Accordingly, libmonitor overrides these
functions in order to maintain control so that an application
cannot launch new processes without libmonitor noticing.
When the application calls fork, libmonitor delivers three
callbacks. First, it delivers a pre-fork callback in the parent
process, then an init process callback in the child and finally
a post-fork callback in the parent. (Technically, the init pro-
cess and post-fork callbacks occur in separate processes, so
they could occur in either order.) This sequence enables the
client to track the parent-child relationship among processes
that it is monitoring.

Even though exec technically does not change the process
id number (pid), exec represents the end of one process and
the beginning of another. Accordingly, libmonitor delivers a
fini process callback in the old process and then, if the new
process is also monitored, an init process callback in the new
process.

Threads. Besides the init and fini thread callbacks, libmon-
itor also provides support for matching parent and child
threads. Libmonitor provides pre and post thread cre-
ate functions analogous to the pre and post fork callbacks.
When the application calls pthread_create, libmonitor calls
thread pre create in the parent thread, then init thread in
the new thread and finally thread post create in the parent
thread. (Again, the init thread and post create callbacks
occur in separate threads, so they could occur in either or-
der.) This sequence enables the client to track where in the
parent thread the new threads are created.

Libmonitor also maintains a thread local data pointer for
each thread. This is a void * pointer which is set by the
return value of the init thread callback and maintained
throughout the lifetime of the thread. The pointer returned
by the thread pre create callback is passed to the init thread
callback in the new thread, thus making it easy for the client
to match the parent and child threads.

Signals. Because signals are an important part of process
control, libmonitor gives the client first access to any signal.
That is, the client can register a handler with libmonitor
via the monitor_sigaction support function (see Figure 2).
Libmonitor will deliver this signal first to the client, even if
the application has registered a handler for the same signal.
The client can then process the signal or decline it. If the
client declines the signal, libmonitor handles it according to
the disposition of the application, either invoking the default
action or delivering the signal to the application.

For example, unwinding the call stack is a tricky process
and can sometimes produce segfaults due to bad debug-
ging information. So, HPCToolkit registers a handler for
SIGSEGV with libmonitor. When it receives this signal, if the
segfault occurred during an unwind attempt, then HPC-

Toolkit uses siglongjmp to exit the region. Otherwise, it
declines the signal and libmonitor delivers the signal to the
application.

Dlopen. Processes can insert new code into their address
space with dlopen and dlclose. Profiling tools need to
know when this happens to analyze the new regions. Ac-
cordingly, libmonitor provides callbacks when the applica-
tion calls dlopen or dlclose. The client receives callbacks
immediately before and after the dlopen or dlclose along
with the path or handle to the library. This sequence al-
lows the client to track changes in the application’s address
space.

Runtime stack bottom. An important task in performance
and correctness tools is unwinding the call stack. Accord-
ingly, libmonitor provides support functions to help make
the unwind process more reliable. First, libmonitor identi-
fies a range for the return address of the last (innermost)
function on the call stack for every thread and makes this
available to the client. Because libmonitor intercepts the
beginning of every process and thread, there is already a
libmonitor function at the bottom of the call stack. Thus,
it is a simple matter for libmonitor to put assembly labels
immediately before and after the call to the first application
function, either main or the pthread start routine. Every
application stack unwind should end at an address within
one of these frames.

Second, libmonitor identifies the bottom of every thread’s
runtime stack. Again, because libmonitor runs before the
application, it can use alloca to allocate a small amount
of space on the stack and make this address available to
the client. This way, the client can find the bottom of the
runtime stack and can tell if it has unwound too far.

3. TECHNICAL CHALLENGES
Libmonitor faces a number of interesting technical chal-
lenges to maintain process control, including overriding func-
tions in the static and dynamic cases, control of signals and
catching process exit.

Dynamically linked case. For dynamically linked applica-
tions on Linux systems, libmonitor uses the dynamic linker-
loader’s LD_PRELOAD feature [5]. Libmonitor defines over-
rides for functions such as __libc_start_main, _exit, fork,
exec, etc. These overrides plus the rest of the libmonitor
code are compiled into a shared library which is inserted
into a process’s address space by setting the LD_PRELOAD en-
vironment variable. (It is common to use a launch script to
set LD_PRELOAD and exec the application.) When the process
starts, it runs __libc_start_main from libmonitor instead
of libc. Libmonitor replaces the argument for the applica-
tion’s main function with the address of its own main and
calls the real __libc_start_main. Then, from the libmon-
itor main, it delivers the init process callback to the client
and finally calls the application’s main function.

The advantage of the LD_PRELOAD solution is that it works

with prebuilt executables and requires no modifications to
any source files or the build system. It also works when
source files are not available. The disadvantage is that this
approach only works with functions from shared libraries.
Although it might seem more natural to override main in-
stead of __libc_start_main, that idea won’t work. Func-
tions such as main are statically linked and cannot be over-
ridden with LD_PRELOAD. On Linux systems, _start calls
__libc_start_main in libc which then calls main and this
approach works. On other systems such as FreeBSD, _start
calls main directly and so this approach will not work there.

Statically linked case. For statically linked applications,
libmonitor uses the --wrap option from GNU’s ld [4]. This
is a feature for overriding functions at program link time.
For example, to intercept the function main, libmonitor de-
fines the function __wrap_main and adds the option “--wrap
main” to the link line. This causes the linker to replace
calls to main with libmonitor’s __wrap_main and to replace
calls to __real_main with the application’s main. Libmoni-
tor gains control of the process in its __wrap_main function.
There, it delivers the init process callback and then calls
__real_main to return control to the application.

The advantage of the --wrap solution is that it works
with any function, not just functions from libc. This
method also works on systems like FreeBSD that don’t use
__libc_start_main. The disadvantage is that it requires
relinking the application to add the libmonitor code. Re-
linking does not require modifying any source files and tech-
nically, it does not require recompiling any files (that is,
compiling from source to object). However, it does require
modifying and rerunning the final link step.

Control of signals. Libmonitor maintains control of the
application’s signals for two reasons. First, signals can cause
the process to terminate. Libmonitor needs to catch all
forms of exit, so it cannot allow the process to terminate
by a signal without noticing. Second, libmonitor gives the
client first access to any signal. That is, the client can reg-
ister a handler with libmonitor, receive a signal and decide
if it wants to handle the signal. If the client declines the
signal, libmonitor handles the signal according to the dispo-
sition of the application, either invoking the default action
or delivering the signal to the application.

To maintain control of signals, libmonitor installs a signal
handler for every catchable signal, that is, every signal ex-
cept SIGSTOP and SIGKILL. Libmonitor must also override
signal and sigaction and keep track of the application’s
disposition for every signal, whether the signal is caught,
ignored or has the default action. Then, on every signal
delivery, libmonitor must catch the signal, possibly offer it
to the client and then take the appropriate action for that
signal.

Process exit. An essential feature of libmonitor is that it
catches and delivers a callback for all forms of process exit.
A process can terminate by calling exit or exec, returning
from main or by exiting via a signal. To catch these, libmon-

itor overrides all forms of exit: exit, _exit and _Exit; and
all forms of exec: execl, execlp, execle, execv, execvp and
execve. Libmonitor can then deliver the callback function
before calling the real function.

To catch termination by a signal, libmonitor installs a sig-
nal handler for every catchable signal and maintains a table
of every signal’s disposition. When it receives a signal, lib-
monitor must determine if this signal will lead to process
termination. If so, it must deliver the fini process callback
before allowing the signal to take effect.

Thread shootdown. Threaded processes are not always
well behaved at process exit time. It would be nice if all
threads called pthread_exit before the main process called
exit, but this is not always the case. Further, exit is not
always called from the main thread. Libmonitor promises
that before the process exits, every thread (except the main
thread) receives a fini thread callback from within that
thread. But merely overriding pthread_exit is not suffi-
cient because another thread may exit the process without
calling pthread_exit.

Libmonitor addresses these issues by using signals to run
code in another thread. When one thread initiates process
exit, libmonitor sends pthread_kill to the other threads
to tell them to run their fini thread callback. This use of
signals is how libmonitor runs code in another thread so
that the fini thread callback will be delivered from within
the thread itself. Although libmonitor calls this technique
“thread shootdown,” it is important to note that libmonitor
does not actually terminate the other threads. After the fini
thread callback, libmonitor returns control to the applica-
tion to allow it to terminate naturally.

Multiple MPI implementations. For MPI programs, lib-
monitor provides the client with the MPI size and rank rela-
tive to MPI_COMM_WORLD. But this presents a technical prob-
lem. Getting the process’s rank by calling MPI_Comm_rank

requires knowing the value for MPI_COMM_WORLD. But the
value and even the type of MPI_COMM_WORLD varies by im-
plementation. On the surface, this means that libmonitor
must be tied to a single MPI implementation.

Libmonitor’s solution is to wait for the application to call
MPI_Comm_rank itself, capture the first argument and use the
same value as the communicator. In this way, it is possible to
build a single libmonitor installation that works with essen-
tially any MPI implementation. This method does require
that the application calls MPI_Comm_rank early in the pro-
gram and uses MPI_COMM_WORLD as its first communicator,
but virtually any MPI program will already do this.

4. SUMMARY
In summary, libmonitor is a useful library for process and
thread control. Libmonitor is mainly designed for first-party
monitoring on large parallel systems such as the IBM Blue-
Gene and the Cray XT. Libmonitor is easy to use, fully scal-
able and works with both statically and dynamically linked
executables.

5. ACKNOWLEDGMENTS
Development of libmonitor is supported by the Department
of Energy’s Office of Science under cooperative agreements
DE-FC02-07ER25800 and DE-FC02-06ER25762.

6. REFERENCES
[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel,

G. Marin, J. Mellor-Crummey, and N. R. Tallent.
HPCToolkit: Tools for performance analysis of
optimized parallel programs. Concurrency and
Computation: Practice and Experience, 22(6):685–701,
2010.

[2] Krell Institute. Open SpeedShop for Linux.
http://www.openspeedshop.org/wp/.

[3] M. Krentel. Libmonitor. https:
//outreach.scidac.gov/projects/libmonitor/.

[4] The ld(1) man page.

[5] The ld.so(8) man page.

[6] P. Mucci. Monitor.
http://icl.cs.utk.edu/~mucci/monitor/.

[7] P. Mucci. Papiex.
http://icl.cs.utk.edu/~mucci/papiex/.

[8] Rice University. HPCToolkit performance tools.
http://hpctoolkit.org/.

[9] University of Tennessee, Knoxville. The performance
API. http://icl.cs.utk.edu/papi/.

void *monitor_init_process(int *argc, char **argv, void *data);

void monitor_fini_process(int how, void *data);

void *monitor_init_thread(int tid, void *data);

void monitor_fini_thread(void *data);

void monitor_init_thread_support(void);

void monitor_pre_dlopen(const char *path, int flags);

void monitor_dlopen(const char *path, int flags, void *handle);

void monitor_dlclose(void *handle);

void monitor_post_dlclose(void *handle, int ret);

void *monitor_pre_fork(void);

void monitor_post_fork(pid_t child, void *data);

void *monitor_thread_pre_create(void);

void monitor_thread_post_create(void *);

void monitor_init_mpi(int *argc, char ***argv);

void monitor_fini_mpi(void);

Figure 1: Selected libmonitor callback functions.

void *monitor_real_dlopen(const char *path, int flags);

int monitor_real_dlclose(void *handle);

void monitor_real_exit(int status);

int monitor_real_system(const char *command);

int monitor_real_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

int monitor_real_pthread_sigmask(int how, const sigset_t *set, sigset_t *oldset);

int monitor_sigaction(int sig, monitor_sighandler_t *handler, int flags,

struct sigaction *act);

int monitor_is_threaded(void);

void *monitor_get_user_data(void);

int monitor_get_thread_num(void);

void *monitor_stack_bottom(void);

int monitor_in_start_func_wide(void *addr);

int monitor_in_start_func_narrow(void *addr);

int monitor_mpi_comm_size(void);

int monitor_mpi_comm_rank(void);

Figure 2: Selected libmonitor support functions.

/*

* Combine libmonitor and PAPI to count PAPI_TOT_CYC in a process.

*/

#include <err.h>

#include <errno.h>

#include <stdio.h>

#include "monitor.h"

#include "papi.h"

static int EventSet = PAPI_NULL;

void *

monitor_init_process(int *argc, char **argv, void *data)

{

if (PAPI_library_init(PAPI_VER_CURRENT) != PAPI_VER_CURRENT)

errx(1, "PAPI_library_init failed");

if (PAPI_create_eventset(&EventSet) != PAPI_OK)

errx(1, "PAPI_create_eventset failed");

if (PAPI_add_event(EventSet, PAPI_TOT_CYC) != PAPI_OK)

errx(1, "PAPI_add_event failed");

if (PAPI_start(EventSet) != PAPI_OK)

errx(1, "PAPI_start failed");

return NULL;

}

void

monitor_fini_process(int how, void *data)

{

long long values[1];

if (PAPI_stop(EventSet, values) != PAPI_OK)

errx(1, "PAPI_stop failed");

fprintf(stderr, "This process used %lld PAPI_TOT_CYC.\n", values[0]);

}

Figure 3: Skeleton papiex callbacks to count PAPI_TOT_CYC in a process.

